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Abstract

This report presents preliminary results of an investigation into the development of a procedure

to provide curvature continuity between biparametric cubic Bezier surface patches in the computer-
aided design package known as SMART (Solid Modeling Aerospace Reasearch Tools). This initial

effort was aimed at providing the designer with the ability to locally impose curvature continuity at the

intersection of two Bezier curves without disrupting either the curvature or slope continuity that may
exist at the ends of these curves. Such a method was found ff the origianl Bezier control points are aU

coplanar. If they are not then it is possible to find a minimum deviation from exact curvature continuity.

In cases where this is not sufficient, then an entire piecewise curve must be made curvature continuous

simultaneously. A method was developed based on cubic splines which is very fast. The procedure

returns new Bezier control points which have both slope and curvature continuity.

Introduction

The development of computer-aided design packages have advanced to the state where it is now

possible to build up a geometric description of an aerospace system in a very short time using high power

graphics workstations. At the same time, it becomes desirable to have the ability to apply various
numerical flow solvers to the resulting shapes to test their aerodynamic efficiency. These numerical

flow solvers usually need the domain partitioned into small cells to provide a computational grid suitable

for the discretized equations.

The ultimate aim of this project is provide the ability of a computer-aided design package,

SMART, developed at Langley Research Center, to include the generation of finite difference grids in
a computational domain around the designed surfaces. Several methods for generating such grids are

available but none are designed to smooth surface data. Hence if the surface has discontinuities the grid
will be generated accordingly. The subsequent computation of the metrics of a coordinate transformation

bY using fin.itd differences wiU thus have larger errors than usual This inaccuracy of finite difference
approximation to a differentioal equation will be larger than desired. To prevent these unwanted errors,

it was necessary to begin with the requirement that the design surfaces must have curvature continuity
over most of the domain.
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Most computer-aided design packages describe the design surfaces by combining several surface

elements called patches. These patches can be geometrically described by analytic functions of various

kinds. Of particular interest are cubic polynomials. Here, the cubic polynomials are cast as biparametric

Bezier curves. Cubic Bezier curves use control points as weights for a series of Bernstein polynomials and

provide a relatively powerful mechanism for the designer to manipulate the shape, which is done by moving
the control points. In the same manner, movement of the control points can allow for postprocessing of the

designed shape as we wish to do here to impose curvature continuity. Thus, after the designer.creates a shape,

the resulting patches can then be smoothed by manipulating the location of the patch control points.

Unfortunately, curvature continuity, along with slope continuity, requires information to be used

from more than one patch. This couples all patches together requiring the simultaneous solution of new

control point locations. If the number of patches is large, then this would require the solution of a rather large

Linear system and would likely be time-consuming even on high speed graphics workstations. It was thus

desirable to investigate whether it would be possible to provide the curvature continuity for patches

individually or at least with some minimal effort.

The examination of the problem took the form of first looking at how the designer actually constructs

a shape and seeing ff there were some way of providing a priori curvature continuity rather than at the end

of the process. It seems that a significant amount of time is spent in the generation of two dimensional cross

sections of the design shape. Thus cubic Bezier curves are generated describing these cross sections.

Once the cross sections are described, they are assembled axially to build up the surface. A number

of axial curves are then generated to connect the cross sections. These are also piecewise cubic curves with

one cubic in between each cross section. In this manner, the surface is thus described by two families of

piecewise cubic curves. The surface can be seen as a collection of four-sided patches with one cubic on each

side. The task of providing curvature continuity between the patches is made much easier ff there already

exists curvature continuity in both famiLies of curves.

To obtaincurvaturecontinuityon thesecurvestwo taskswere identified:

Task 1- Provide a means of adjusting the Bezier control points at the intersection of two cubic B ezier curves

to gain slope and curvature continuity without disrupting the same at neighboring interserctions.

Task 2 -Provide a means of ensuringcurvanu_ continuityon an entireseriesof cubic Beziercurves.

Both of these taskshave been completed. The remainder of thisreportexplains the approach,

method, and presentsan example foreach task.The remaining effortofprovidingcurvaturecontinuityfor

entirenetwork of patches willbe the subjectof the finalreport.



Task 1 - Curvature Continuity between adjacent Cubic Bezier Curves

while maintaining C1 & C2 at the ends and C1 at the junction

It is desirable, in CAD systems, when using cubic curves, to be able to attain various levels of

continuity between adjacent curves. Here the desire is to attain C2 at intersections wi.thout disturbing

the C1 and (22 continuity at neighboring intersections. In addition, it is assumed that the C1 continuity

which already exists at the intersection will not be disturbed. By this is meant not only that the Bezier

control points on either side of the intersction are cotinear with it, but that the ratio of their distances from

it will remain constant. This ratio is also required at the neighboring junction points and does not allow

for the control points nearest to neighboring junctions to be moved. It is thus allowed only to move, in

space, the intersection point in question and the two control points adjacent to it.

If such a shift of control points is possible, this would allow the designer the flexibility of select-

ing local junctures for enhanced continuity without having to simultaneously perform the operation at

all junctures where such continuity is desired. In the present effort, it will be shown that if adjacent Bezier

cubics have coplanar control points, there is a unique solution to the problem. If the control points are

not all coplanar, then it is possible to find the minimum (22 discontinuity at the intersection.

Analysis

Consider the intersection of two cubic Bezier curves shown in Fig. 1. The control points are

coordinate vectors denoted by bo., b.t, etc. Shown also are the requirements for C2 continuity at b,

ie. an auxilliary point d exists which not only is the intersection of extensions from the control polygon,

but that ratios of certain lengths must also be held.

b_l

t

L,

d b. 1t

1-t 1-t
1-t b÷ 2

b.,

Fig. 1 Adjacent Bezier curves, associated control points and

auxilliary point d. The t and 1-t are meant to indicate ratios only.



WhenC2continuitydoesnot exist, there are two points, d_ and d2, as shown in Fig. 2. This is the

case more typically found. To gain (22 at b, it is necessary to move one or more of the control

points so that the two points d_ and d2 are coincident.
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bn+!

Fig. 2 Adjacent Bezier curves when {22 at the juncture does not exist.

The auxilliary points d_ and d2 are not coincident.

This can be done if the following are satisfied:

b..t = (1- t)b._ z + td

bn = (1 - t)bn. l + tb,÷ t

b,, 1ffi (1-t)d + tb,. z

(1)

(2)
(3)

To maintain C2 at the ends the following must also be satisfied:

bo. 3- 2bo. 2 + bo. l = kl(b.. _ - 2b.. 2 + b,.x)

b_,3- 2bo+2 + b,.l ffi k2(bo.3- 2bo.2 + bo.l)

(4)

(5)

Where the overbar indicates the original position. Maintenance of C1 with distance ratios at the ends

means that the points b2 and b.2 can not be moved. Hence, only b .I,b, and b_. 1 are to be relo-

cated. Equations 1-3 further require that all but b_3 and b,÷s must be coplanar for the possiblity of C2

at b to exist.

The geometric interpretation of the problem is shown in Fig. 3. Equations 4 and 5 require

that b I and b.l can be moved only along lines parallel to the vectors represented by the second dif-

ferences of the end control points. Thus k_ controls the location of b_ and k2 controls the loca-

tion of b÷_. Equations I and 3 then locate the auxilliary points _ and d2 . Thus different values of

k_ move b .:and d_ through parallel lines in space. Similarly, k2 moves b,_t and d2 through two

other parallel lines in space. It should now be obvious that if all control points are coplanar, then the

lines swept by d_ and d2 are also coplanar and their intersection represents the solution of the prob-

lem. Mathematically, we note that there are 5 equations for the 4 unknowns (the three control points

and the auxilliary point d) and two undetermined parameters kt and k z" This shows that if all of the

control points for both curves are coplanar, then each point has two independent components. Hence

the two parameters (k_ and k2) are sufficient to make up a 5th unknown and the system is well-posed.
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b

Fig. 3 Geometric interpretation of the solution of equations 1-5. As k_ and k 2

are changed, the auxilliary points d and d move along lines parallel to the

endpoint vectors. The intersection of these lines at d is the solution.

Non-Coplanar End_voints

Ifb.3 and b÷_ are not coplanarwith the othercontrolpointsthen the lines swept by d_ and

d2 are skew and no solution exists. However, there is an extremely useful interpretation of the

closest approach of the two lines. The closest approach of the two skew lines represents the best

possible match of the curvatures of the two cubic Bezier space curves. In fact, as the two endpoints

approach being coplanar with the remaining control points, the two skew lines come closer to inter-

secting and the respective curvatures of the two Lines approach being exactly C2. This means that if

the endpoints are not fax from being coplanar with the rest of the control points then it is possible to

attainnear C2 continuity.

To see why a unique solution may not exist when the endpoints are not coplanar, consider

fitting two cubic spLines between three points in space. Both C1 and C2 continuity are attained at

the middle point but only specified slopes at the ends can be given. To attain specified curvatures at

the ends, the middle point can be moved. There is a unique solution to this problem, even if the

endpoint slopes are not coplanar. If they are, then this corresponds to the unique solution given in

the last section. For the case when they are not, one need only examine the corresponding Bezier

control points to see if those nearest the ends match the ones given in the problem. It is unlikely.

We next return to the idea of finding this nearest C2 continuity. It amounts to finding the

values of i_ and k2 for which the two skew lines have their closest approach. To find these values it

is merely sufficient to find the location in space of the points on each line at closest approach. The

following is an outline of the procedure and an example to show how near C2 continuity is attained.



Procedure for Nearest C2

Consider the skew lines in space 11and 12 swept out by d I and d2 as the values of ks and k4

are changed as shown in Fig. 4. Note that ks and k4 are directly proportional to k1 and ka . The

equations for 11and 12 are given by:

lt--d I +ksc t

12=d +ksc,

6

(6)

Where c_ and c2 are the curvature vectors of the end points. Let the intersections of the line containing

the shortest distance between the skew lines with the lines be called P and Q. We now seek to f'md P and

Q and the associated values of ks and ks.

12 Q

P

I
°1

Fig. 4 Skew lines given by sweep of d I and d2 due to changing ks and ks.

(7)

1. The cross product of the endpoint curvature vectors ca and ca defines the direction of

the line containing P and Q. The distance between P and Q is found by projecting the line segment

d I d2 on the unit vector in the direction of PQ:

{d d L(C_XC% (8)

2. Next It is projected onto the plane perpendicular to PQ containing 12.
for the projected line is:

The projected line crosses

for solving for ks and k(.

The equation

11= d1 + ks c t + PQ (9)

12 at Q. Hence equating the projected line with 12 gives an expression

3. Having found ks and k4 , b. t is found from equation 4, b l is found from equation

5, and b is found from equation 2. Note that the original C1 and (22 at the ends and C1 at the inter-

section are maintained exactly while (22 at the intersection is approximate.



Example (Coplanar control points)
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To insure that a coplanar set of points was generated while trying to be general, a set of points

was generated all with the same z_ate. The set was rotated about the x-axis and then about the

y-axis. The resulting set of coordinates were used:

x

Y

Z

n-3 n-2 n-I n

-1.39545

.76603

1.58301

-.71244

1.63205

1.76603

.13878

2.48076

1.84038

.88660

2.67128

1.53564

n+l n+2 n+3

2.00833 3.0980_ 3.08109

2.95707 1.6320.' .07321

1.07853 -.43397 -1.46340

The mismatch in initial curvature at the intersection is shown best by noting that equations 1-

3 can also be expressed as requiring:

b, - 2b._ l + bo_2 = k(b. - 2b,+ t+ b,+ 2) (10)

Hence each component of the second difference vector on one side of the intersection must be the same

multiple (fraction) of the components on the other side. This means that the ratios of the components

must be the same. That is: bn - 2bn-1 + bn-2 = k (11)

b n - 2bn+ 1 + bn+ 2

In this example the initial coordinates gives:
k

x 3.2324

y .4086
z .3592

Table I. Second difference ratios of coordinates at the intersection

Thus the ratio of the second differences of the coordinates on either side of the junction are rather

different. After finding the new points by the procedure above we find the ratios to be:

k

X .4444

y .4444

Z .4444

Table II. Second difference rauos o :oordinates at the intersection

after imposing curvature continuity

Hence for the case of coplanar control points, the C2 is attained exactly.

Example (Non coplanar)

In ti3i's example, the first point, bo_3, was displaced by a distance of.8 in the z-direction before

the x- and y-axis rotations. This guaranteed that all points were coplanar except the first which had co-

ordinates of (-1.04904, .36603, 2.18301)and was 35.6 deg out of the plane containing the other cont_l

points. The initial curvatures were the same as the above example, since the end control point is not

included in computing the curvatures. The final curvatures, however, are given in Table HI below.
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k
x .3963

y .3_6
z .3904

Table HI. Second Difference ratios for noncopanra control points

after curvature continuity is imposed.

Thus, while exact C2 is not attained, it can be seen that the error in matched C2 at the juncture is small

even though one of the ends made an angle of 35.6 deg with the plane containing the remaining control

points.

Hence, the procedure outlined above allows for the designer to go to a single intersection of a
composite cubic Bezier curve and locally impose curvature, along with slope, continuity ff the control

points of the two curves are coplanar. Since most cross sections do contain coplanar control points, this
represents a rather useful capability. For those intersections where the control points on either side are
not coplanar then the procedure allows to come as close as possible. A program listing is given in

Appendix A which carries out the steps given above.



Task 2- Curvature continuity ((22) of a series of cubic Bezier

curves which are at first only CO
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As it has been shown, ff the initial control points are not coplanar, then exact curvature continuity,

is locally unobtainable, though it is possible to generate the coefficients locally of that pair for Bezier curves

which are as close as possible to curvature continuous. This may suffice for many applications. But ffnot,

it becomes necessary to attain the continuity for all cubics in the piecewise curve simultaneously.

Fortunately, this can be done relatively easily. The problem is very similar to setting up an

interpolant between points in space. The procedure is one where the endpoints of each Bezier curve is kept

f'Lxed in space. Thus the outer Bezier control points of each cubic are retained. We will thus show that the

problem is solved by replacing the interior control points with those computed from the corresponding cubic

splines placed through the end points of each piecewise cubic. The end conditions used are thosewhich keep

the original slopes at the ends of the piecewise curve.

Analysis

Consider the series of Bezier control points, control polygons, and corresponding cubic curves shown

in Fig. 5 below.
b21 m b31_'_

_ T2)
bn

m o.'°'°"'b'o2"''.'__

•: b

bo, i(_

Fig. 5.

b, b35

bj5 '25 .m
if'** @

b m ...o/'

12b"W..,,be %_: b_

b_'_:, b,5 /

(_ ": b,, I. ./;.u b_

",,, _'33 ,,'O b,,

d'-..m *_ ,-'
boa.

Example of piecewise cubic Bezier curve where neither C1 nor C2 exist.

For clarity, the control polygon has not been drawn. Since the Bezier control points on either side of the three

interior intersections are not collinear with the control point at that intersection, it is clear that slope contiuity

is absent. Table IV shows the ratio of curvature vectors for each of the three interior intersections. As they

are not equal, it is clear that curvature continuity is also absent.

© ®
x 1.0769 .8000 1.5000 -2.6364

y -6.4000 -.1250 .7273 .1250

Table IV. Curvature ratios at the interior points of initial

set of cubic Bezier curves.

Now consider the cubic spline which has been placed through the inersection points as shown in Fig. 6. The

intersection points are also the outer two control points of any one cubic. Hence, only new inner control

points need be found. To place a cubic spline through these points any standard cubic spline routine can
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Fig. 6 Cubic spline through the intersections of the Bezier curves.

be used. The user only need specify two end conditions. These end conditions can either be those called

"natural" wherein the second derivative is zero; "slope", where the slope at the end is specified; or some
combination. It seemed most appropriate in this circumstance to use the slopes existing at the ends of original

Bezier cubics. With these end conditions, a piecewise parametric cubic spline was passed through the ends

and the intersction points.

For this effort, an optimized parametric cubic spline routine was written where a single parameter,

t, varied between zero and one on each cubic. Each cubic has the form: (12)

x = (Xit3 + [3i t2 + Tit + x i

where x represents the coordinates of a point on the cubic, and x i contains the coordinates of the ith cubic
when t=0. Thus, ff there are N cubics, there will be 3N unknowns. To get 3N equations we note that the

condition of CO continuity requires:

(Xi_ I "4"Pi-I 4" Yi-I + Xi-I --'_ Xi

C1 requires:

and C2 requires:

ie[1,N] (13)

ie[1,N-I] (14)

ie[1,N-1] (15)

There are 3N equations and this leaves the two end conditions to get the remaining two equations. The usual
practice is to use these equations to write a relationship between one of the coefficients at three different
points. This eliminates the other two variables. Here we used eq. (13)-(15) to write and eqation for [3:

P,-t +4J3t+ J3,.,.,= 3(x,_,- 2x,+ xi.l) i _ [2,N- 1] (16)

The linear system is computed by adding the end conditions in terms of 1_. Hence we have:

2 1

+- P2=3(x2- s,
2 7

=

S1= 3(:bll'- bo,)

S2 = 3(b3s - b2s)

where

(17)

(18)

(19)

Equations (16)-(19) form a tridiagonal system of equations for each coordinate direction and can thus be

solved very quickly. With each of the l_'s found, the other coefficients are computed from eq. (14) and (15).

This defines the cubics in the piecewise curve.
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Once the cubic splines have been generated, the inner two Bezier control points for each cubic can

be found from:
bl i _ bo i + _i

3

1

b2i = b3i-_(3ai + 2_i + _'i)

(2O)

The resulting new curves and corresponding control points are shown in Fig. 7. The dashed lines are

the original cubics and the open circles are the original Bezier control points. It may be n6ted, as a visual

check of slope continuity, that at each intersection, the two control points on either side Of the intersection

bx$

b /t;/ _" b:"b_b°3

b1'

Fig. 7 New cubic Bezier curve with new control points.

point are now collinear, unlike the original control points. The control points next to those at the very ends

of the total curve are the same as the original ones as a consequence of retaining the original slope at the end

points. The fit of the new curve is close to the old except where the old curve was rather badly matched in

slope and in curvature (ie. at intersection (_)).

The new curvature ratios, shown below inTable V., show that curvature continuity has been

achieved.
Intersection

@ @ ® ®
x 1.0000 1.0000 1.0000 1.0000

y 1.0000 1.0000 1.0000 1.0000

Table V. Curvature ratios at the 4 interior intersections

This completes the second task. The procedure allows for virtually any combination of cubic Bezier

curves which describe a piecewise curve to be made into one which has both slope and curvature continuity.

The original control points are retained at each of the curve intersections and new ones are created for the

interior of each curve. The new control points are computed from the coefficients of the associated spline

curve through the, original intersections. The control points adjacent to the outside ends of the fhst and last

cubic have also been retained since the end requirement of slope matching the original curve has been

imposed. It may be noted that there is no requirement on the originalcontrolpoints to be coplanar as in

task one. A program listing is given in Appendix B for a subroutine which takes the control points of a series

of Bezier curves, fits a cubic spline through the intersections and endpoints, and recalculates the interior

Bezier control points.



Appendix A

Program Listingfor Task I

The followingprogram inFORTRAN willcompute the valuesof kIand kz given an initial

setof controlpoints,and adjustthe positionof the controlpointsb._,boand b..v

SUBROtYnNE C2(X,Y,Z)

DIMENSION X(4, 2),Y(4, 2), Z(4, 2)

C.-u FIND CURVATURES OF ENDS

CEXI = X(3,1) -2"X(2,1) + X(l,l)

CEYI = Y(3,1) -2"Y(2,1) + Y(I,I)

CEZ1 -- 7o(3,1)-2"Z(2,1) + Z(1,1)

C

CEX2 = X(4,2) - 2"X(3,2) + X(2,2)

CEY2 - Y(4,2) - 2"Y(3,2) + Y(2,2)

CEZ2 = Z(4,2) - 2"Z(3,2) + 7_.(2,2)

FIND t TO MAINTAIN C2 AT b
sl

DX = X(4,1) -X(3,1)

DY = Y(4,1) -Y(3,1)

DZ = Z(4,D-Z(Bd) _ '_
Sl = SQRT(DX**2 + DT**2 + DZ**2)

DX = X(2,2) -X(3,1)

DY = Y(2,2) - Y(3,1)

DZ -- Z(2,2) - Z(3,1)

S2 -- SQRT(DX**2 + DY**2 + DZ**2)

T = S 1/$2

 dd2

XDI = X(2,1) + (X(3,1)-X(2,1))/T

YDI = Y(2,1)+ (Y(3,1)-Y(2,1))/T

ZDI = 7_,(2,1)+ (Z(3,1)-Z(2,1))/T

XD2 = (X(2,2) - T * X(3,2)) / (1 - 1")

YD2 = (Y(2,2) - T * Y(3,2)) / (1 - T)

ZD2 - (7_,(2,2) - T * 7_.,(3,2)) / (1 - T)

FIND P AND Q

12

DX = XD2 -XDI



C

C

DY = YD2 - YDI

DZ = ZD2 - ZD 1

CEX =CEY1 * CEZ2 - CEY2 * CEZ1

CEY = CEX2 * CEZI - CEX1 * CEZ2

CEZ = CEX1 * CEY2 - CEX2 * CEY1

eL = SQRT ( CF_.X**2 + CEY**2 + CEZ**2)

PQ = (DX * CEX + DY * DEY + DZ * CEZ) / CL

CEX =CEX* PQ/CL

CEY =CEY * PQ/eL

CEZ = CEZ* PQ/eL

DEN = CEX 1

K3 = ((CEY -

K4 = ((CEY -

* C'EY2 - CEX2 * CEY1

DY) * CEX2 - (CEX - DX) * CEY2) / DEN

DY) * CEXl - (CEX - DX) * CEY1) / DEN

PX =XD1 +K3* CEX1

PY = YD 1 + K3 * CEYI

PZ ffi ZD1 + K3* CEZ1

QX = XD2 + K4 * CF.X2

QY = YD2 + K4 * CEY2

QZ = ZD2 + K4* CEZ2

NEWK1ANDK2 :

KI = (T * PX - (1 + T) * X(2,1) + X(l,1)) / CEX1

K2 - ((1 - T) * QX + (T - 2) * X(3,2) + X(4,2)) / CEX2

FIND NEW b, b , and b

X(3,1) = 2 * X(2,1) -X(l,l) + K1 * CEXI

Y(3,1)= 2 * Y(2,1)-Y(I,I) + K1 * CEYI

Z(3,1)= 2 * 7_.(2,1)-Z(I,I)+ K1 * CEZI

X(2,2) = 2 * X(3,2) - X(4,2) + K2 * CEX2

Y(2,2) = 2 * Y(3,2) - Y(4,2) + K2 * CEY2

Z(2,2) = 2 * Z(3,2) - 7_,(4,2) + K2 * CEZ2

XN - (1 - T) * X(3,1) + T * X(2,2)

YN -- (1 - '1') * Y(3,1) + T * Y(2,2)

ZN = (1 - T) * 7-.(3,1) + T * 7-,(2,2)

x(4,1) = XN
Y(4,1) =YN

13



z(4,1)=zN

X(1,2) = XN
Y(1,2) = YN
Z(l,2) = ZN

RETURN
END

THAT'S ALL

14
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Appendix B.
Curvature Continuity on a Piecewise Cubic Curve

The following FORTRAN subroutine is designed to perform the steps listed in Task 2. That is, given

an input set of N Bezier cubic control points, cubic splines are put through the intersection points and new
interior control points are found.

SUBROUTINE BCRV(X,Y,Z,N)

DIMENSION
DIMENSION

DIMENSION

DIMENSION

X(4,N),Y(4,N),Z(4,N)

XXON+ I),YY(N+ I),ZZ(N+1)

A(N),BfN),C(N),D(N)

AA(N),BB(N),CC(N)

C

C

C

C

C

C

C

C

C

N

X,Y,Z

XX,YY22Z
A,B ,C,D

AA,BB,CC

SOME OF THE VARIABLES

Number of BezierCurves

CoordinatesofBezierControlpoints

Coordinatesoftheendsand intersectionsofthepiecewisccurve

Coefficientsof thecubicsplinematrix

Coefficientsof thecubicsplines

FIND SLOPES AT THE ENDS

SIX = 3. * (X(2,1) - X(l,l))

SlY = 3. * (Y(2,1) - Y(1,1))

S1Z = 3. * (7_,(2,1) - Z(1,1))

s2x = 3. * (X(4,N) - X(3_))

S2Y = 3. * CY(4,N) - Y(3,N))

S2Z = 3. * (Z(4,N) - Z(3,N))

C GET THE INTERSECTION AND END POINTS

DO I001 = 1,N

XX(I) ---X(l,I)
YYfI) ---Y(1,I)
Z2(I) =Z(I_

100 CONTINUE

XX(N+I) = X(4,N)
YYON+I)= Y(4,N)
ZZ(N+I) = Z(4,N)



SET UP CUBIC SPLINE MATRIX

C--_- LOOP ON DIMENSIONS

DO I000 K = 1,3

DO 2001 = 2,N-I

C0r)= 1

B(1) =4

Aft) = 1

IF (K.EQ.1) THEN

DD ffiXX(I+I) - 2. * XX(T) + XX(I-1)

ELSEIF (K.EQ.2) THEN

DD = YY(I+I) - 2. * YY(I) + YY(I- 1)

ELSE

DD = 77..(I+1) - 2. * ZZ(I) + ZZ(I-1)

ENDIF

D(I) = 3. * DD

200 CONTINUE

B(1) = 2.13.

A(1) = 1 J 3.

IF (K.EQ.I) THEN

D(1) = 3.* (XX(2) -XX(1)) -SIX

ELSEIF CK.EQ.2) THEN

D(1) = 3. * CYY(2) - YY(1)) - SlY

ELSE

D(1) = 3. * (ZZ(2) - ZZ(1)) - SIZ

ENDIF

B(N)= 7./3.

C(N) =2./3.

IF (K.EQ. 1) THEN

D(N) = 3. * (XX(N+I) - XX(N)) - 2. * (XX(N) - XX(N-1)) - S2X

ELSEIF (K.EQ.2) THEN

D(N) = 3. * (YY(N+I) - YY(N)) - 2. * (YY(N) - YY(N-1)) - S2Y

ELSE

D(N)- 3. * (ZZ(N+I) - ZZ(N)) - 2. * (ZZ(N) - ZZ(N- I)) - S2Z

ENDIF

C SOLVE THE MATRIX

16

CALL TSOLV(A,B,C,D,BB)
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C- ....... FIND THE OTHER CUBIC SPLINE COEFFICIENTS

IF (K.EQ.D THEN

30O

DO 3001 = I,N-I

AA(I) = (BB(I+I) - B(I)) / 3.

CC(1) ffiXX(I+I) - XX(I) - AA(I) - BB(I)
CONTINUE

CC(N) ffi3. * AA(N-I) + 2. * BB(N-I) + CC(N-I)
AA(N) = XX(N+I) - XX(N) - BB(N) - CC(N)

EI_EIF 0K.EQ.2) THEN

320

DO 3201 = I,N-I

AA(I) = (BB(I+I) - BB(I)) / 3.

CCO = YY(I+I) - Y'Y(I) - AA(I) - BB(I)
CONT/NLE

CC(N) ffi3.*AA(N-1) + 2.*BB(N-1) + CC(N-1)

AA(N) = YY(N+D - YY(N) - BB(N) - cctN)

ELSE

34O

DO 340 1 = I,N-I
AA(I) ffi(BB(I+I) - BB(1)) / 3.

CC(1) ffiZZ(I+I) - ZZ(I) - AA(I) - BB(I)
CONTINUE

CC(N) = 3.*AA(N-I) + 2.*BB(N-I) + CC(N-I)

AA(I_) ffi ZZ(N+I) - ZZ(N_ - BB(N) - CC(N)

ENDIF

C NOW GET NEW BEZIER COEFFICIENTS

DOS00I= 1 TON

IF (K.EQ.I) THEN

DX0 ffiCC(I)
DXI = 3. * AA(I) + 2. * BB(I) + CC(1)

X(2,1) = X(l,I) + DX0 / 3.
X(3,I) = X(4,I) - DX1 / 3.

EI_EIF 0CEQ.2) THEN

DY0 = CC(I)

DY1 ffi3. * AA(I) + 2. * BB(1) + CC(I)



5OO

C.

Y(2,I) ffiY(1,I) + DY0 / 3.

Y(3,I) ffiY(4,I) - DYI / 3.

ELSE

DZO = CC(I)

DZ1 = 3. * AAO) + 2. * BB(I) + CC(I)

z(2,D = z(1,t) + DZ0 / 3.
Z(3,I) = ZX(4,1) - DZl / 3.

ENDIF

CONTINUE

END OF DIMENSION LOOP

1000 CONTINUE

C- ..... THATS ALL

100

200

C

C

STOP
END

SUBROUTINE TSOLV(A,B,C,D,N, BB)

DIMENSION A(N),B(N),C(N),D(N),BB(N)

ELIMINATE C'S

DO I00 1 = 2,N

CBI ---C(I) / B(I-I)

B(I) ---B(I) - CBI * A(I-I)

D(1) - DO) - CBI * D(I-1)

CONTINUE

BB(N) = D(N) / B(N)

DO 200 1 = N-l,l,-1

BBO)'- (DO) - A(I)*BB(I+I)) / B(1)

CONTINUE

RETURN

END
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